

The Steel Company of Canada

Hamilton Works Community Liaison Committee Meeting Q1 2021

April 2021

Agenda

- 1. Introductions
- 2. Coke Battery Performance Method 303 Results
- 3. Air Dispersion Modeling ESDM and SO₂
- 4. Community Feedback
- 5. Next Meeting
- 6. Adjournment

Coke Battery Performance – Method 303: Performance Review – Daily

Date	Doors (% Leaks)	Lids (% Leaks)	Off-takes (% Leaks)
2015 Thresholds (July 2 start)	54%	2%	NA
2016 Thresholds	32%	2%	NA
2017-2019 Thresholds	10%	2%	5%
2020-2021 Thresholds	5%	1%	4%
Jan – Mar 2021 Results (Average)	0 – 3.67% (0.92%)	0 – 0.77% (0.16%)	0 – 2.44% (0.26%)

Daily Measurements Performed YTD

- All weekdays, except for holidays
- 1 Saturdays
- 4 Sundays

Jan – Mar Operational Adjustments

None required

Coke Battery Performance – Method 303: Performance Review – 30 Day Rolling Averages

Date	Doors (% Leaks)	Lids (% Leaks)	Off-takes (% Leaks)	Charging (sec) (log avg)
2015 Limits (July 2 start)	38%	0.8%	25%	12 sec
2016 Limits	22.5%	0.8%	15%	12 s
2017-2019 Limits	7%	0.8%	4.2%	12 s
2020-2021 Limits	4%	0.4%	2.5%	12 s
Jan – Mar 2021 Results (Average)	0.42 – 1.32% (0.84%)	0.14 – 0.38% (0.23%)	0.12 – 0.37% (0.27%)	2.06 – 4.03s (2.91s)

<u>Jan – Mar Performance</u>

• In compliance with limits

Coke Battery Performance – Method 303: Performance Review – Daily Observations – Pushing Emissions

Date	Pushing Emission (opacity %)	
2015 Limit (July 2 start)	≥ 50%	
2016 - 2018	≥ 50%	
2019	≥ 40%	
2020 - 2021	≥ 30%	
Jan – Mar 2021 Results (Average)	0 - 48.33% (6.31%)	

Jan – Mar Operational Adjustments (7 exceedances)

- Waterwashing of orifice headers and riser pipes
- Air lancing pusher side buss flues
- Cokeside jamb repair

Coke Battery Performance – Method 303: Performance Review – Additional Items

- There were no community complaints for the period of Q1 2021 related to the coke battery performance (Method 303)
- MECP to provide verbal comments

2020 Emission Summary Dispersion Model

Parameter	Standard (ug/m³)	Averaging Period	Max. POI Concentration (ug/m³)	Percentage of Limit
Benzene	*3.90E+00	Annual	2.90E+00	74%
Benzo[a]Pyrene	*4.70E-03	Annual	3.50E-03	73%
Cadmium	3.00E-02	24-hour	8.90E-04	4%
Carbon Monoxide	6.00E+03	1/2-hour	1.80E+03	29%
Chromium	5.00E-01	24-hour	4.70E-02	9%
Naphthalene	2.30E+01	24-hour	1.00E+00	4%
Naphthalene	5.00E+01	10-minute	1.50E+01	30%
Nitrogen Oxides	4.00E+02	1-hour	2.00E+02	50%
Nitrogen Oxides	2.00E+02	24-hour	1.10E+02	56%
Sulphur Dioxide	6.90E+02	1-hour	1.80E+03	258%
Sulphur Dioxide	2.75E+02	24-hour	9.90E+02	360%
Suspended Particulate Matter	*1.90E+02	24-hour	5.30E+01	28%

*Site Specific Standard

Sulphur Dioxide (SO₂)

- Industrial boilers utilize fuels to generate useful steam for operations with the plant
 - Main fuel options are coke oven gas (COG) that is already generated as a by-product of cokemaking, and natural gas
- Central Boiler Station stacks located ~ 30 m away from fenceline
- Utilize COG at boilers to reduce by-product gas flaring, and to reduce additional natural gas requirements – lowers carbon footprint
- Utilizing COG at Central Boiler Station can result in higher modeled SO_2 emissions at property boundary than if COG was flared
 - Highest concentration modeled remains on industrial land

SO₂ Mitigation Options

- Coke Oven Gas Desulphurization
 - Work is underway to meet federal requirements by Jan. 2026
- Coke Oven Gas Balancing for the CBS Boilers
 - Conducted a trial to attempt different distribution of COG between the 2 main boilers
 - Piping configuration limits capacity of COG that each boiler can utilize
- Boiler Pre-heaters
 - Order and install preheaters at the boilers
 - Increases temperature of gas leaving the stack improved air dispersion

Community Feedback

Next Meetings

- Wed. July 28, 2021
- Wed. Oct. 27, 2021

The Steel Company of Canada

Thank You.

stelco.com